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ABSTRACT 

Highway networks serve the public by providing access to critical facilities such as 

hospitals, schools, and markets. Although maintenance and rehabilitation resemble a burden on 

transportation agencies, postponing required road maintenance can result in even higher direct 

and indirect costs (Burningham, 2005). Developing a robust and accurate pavement management 

system (PMS) is the key to supporting decision-makers at local and state highway agencies. One 

of the most important components of pavement management systems is predicting the 

deterioration of the network through performance models.  

In this research, two major objectives were investigated. In the first part, the process and 

outcome of deterioration modeling for three different pavement types in the state of Iowa was 

described. Pavement condition data is collected by the Iowa Department of Transportation 

(DOT) and stored in a Pavement-Management Information System (PMIS). Typically, the 

overall pavement condition is quantified using the Pavement Condition Index (PCI), which is a 

weighted average of indices representing different types of distress, roughness, and deflection. 

Deterioration models of PCI as a function of time were developed for the different pavement 

types using two modeling approaches. The first approach is the Long/Short Term Memory 

(LSTM), a subset of a recurrent neural network. The second approach, used by the Iowa DOT, is 

developing individual regression models for each section of the different pavement types. A 

comparison is made between the two approaches to assess the accuracy of each model. The 

results show that while the individual regression models achieved higher prediction accuracy 

with respect to asphalt pavements, the LSTM model achieved a higher prediction accuracy over 

time for concrete and composite pavement types. 
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In the second part, describes how the accuracy of prediction models can have an effect on 

the decision-making process in terms of the cost of maintenance and rehabilitation activities. The 

process is simulating the propagation of the error between the actual and predicted values of 

pavement performance indicators. Different rate of error was added into the result of prediction 

models. The results showed a strong correlation between the prediction models’ accuracy and the 

cost of maintenance and rehabilitation activities. Also, increasing the rate of error contribution to 

the prediction model resulting in a higher benefit reduction rate.   
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CHAPTER 1.    GENERAL INTRODUCTION 

Transportation Asset Management Plan 

While there are various definitions available for asset management, in general, asset 

management refers to “making financial investment decisions so that returns are maximized 

while satisfying risk tolerance and other investor requirements” (Mehairjan, 2017). In 

transportation, the asset management concept was introduced after the Government Performance 

and Results Act was passed in 1993 (Abukhalil, 2019). Based on this act, accountability is 

considered a priority at all levels, and all agencies must provide a clear explanation of their 

decision-making policy for actions involving public funds (USDOT\FHWA, 2007). All 

transportation agencies, therefore, must justify and report all maintenance and rehabilitation 

activities performed on pavements, bridges, traffic signs, culverts, and all other transportation 

assets.  

A Transportation Asset Management Plan (TAMP) is “the strategic and systematic 

process of operating, maintaining, upgrading, and expanding physical assets effectively 

throughout their life cycle” (MnDOT, 2016). The US Congress passed the Moving Ahead for 

Progress Act in the 21st Century as Act MAP-21 in 2012. Based on MAP-21, each state must 

have a risk-based plan for asset management with respect to infrastructure condition 

improvement, safety, congestion reduction, and environmental sustainability (Corley-Lay, 2014). 

Both pavement and bridge assets are prioritized in MAP-21 and highway agencies spend the 

largest portion of their budget every year to maintain and preserve these two assets. 

Although Departments of Transportation (DOTs) spend a great deal of money each year 

to keep pavement networks in good conditions, based on the 2017 infrastructure report card, 

America's road GPA is only a D, indicating that US roads are in fair to poor conditions 
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(American Society of civil Engineers, 2017). The US has had a financial shortcoming in its 

highway system budget for many years, resulting in a $836 billion backlogs in highway and 

bridge capital. Since the largest portion of this backlog ($420 billion) is for repairing the 

highway system, a systematic way to optimize limited funding is needed to maintain and 

preserve the highway system. 

Pavement Management System 

A Pavement Management System (PMS) is a systematic process for cost-effectively 

maintaining and preserving pavement infrastructure. The American Association of State 

Highway and Transportation Officials (AASHTO) defines PMS as “a set of defined procedures 

for collecting, analyzing, maintaining, and reporting pavement data to assist the decision-makers 

in finding optimum strategies for maintaining pavements in serviceable condition over a given 

period of time for the least cost." (AASHTO, 1993). In the mid-1960s, the concept of PMS was 

introduced as a decision support tool to help decision-makers engage in required maintenance 

and rehabilitation activities with a limited budget (Kirbas, 2010). Generally, the most important 

PMS activities include financial planning, construction, design, pavement evaluation, and 

maintenance (Falls, 2001).  

In PMS, the efficiency of decisions can be improved by evaluating the different outcomes of 

decisions made at different management levels (George, 2000). A PMS can also reduce the 

impact of a limited budget by prioritizing maintenance and rehabilitation activities, optimizing 

the allocation of budgets, and using the most efficient maintenance strategies (TAC, 2016). The 

following PMS capabilities were identified by AASHTO in 2012 (AASHTO, 2012): 

 Evaluating current and future pavement conditions; 

 Estimating funding needs required to improve pavement conditions up to a specific level;  
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 Prioritizing maintenance and rehabilitation activities based on available funds; 

 Evaluating the long-term impact on pavement performance while construction practices, 

design procedures, and material properties change.  

In any decision-making and pavement-management system, two levels of administration can 

be identified: project level and network level (Mbwana, 2001). Determining maintenance and 

rehabilitation strategies, identifying potential locations requiring treatment, and scheduling 

maintenance and rehabilitation activities are at the network level. At the project level, detailed 

maintenance and rehabilitation treatments, and determining the best strategy for maintenance 

actions can be identified. The different criteria for each decision-making level in PMS are 

compared in Table 1. 

Table 1: Comparison between project and network-level in PMS (Alharbi, 2018) 

 

PMS components vary based on available resources and information, including traffic 

information, pavement condition data, pavement physical inventory features, pavement 

performance analysis, pavement maintenance prioritization, and investment strategies (Cottrell, 

1996). Also, based on a study by Vines, collecting pavement condition data, analyzing the 

collected data for determining maintenance and rehabilitation activities, and visualizing the 
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output of the analysis for decision-makers are the components of modern PMS (Vines-

Cavanaugh, 2017). 

Based on the Federal Highway Administration, pavement condition data is a “critical 

component of any pavement management system.” (Pierce, 2013). Cost of any maintenance and 

rehabilitation activity relies directly on pavement conditions (Camahan, 1987). As a result of 

low-quality pavement condition data, the uncertainty in pavement performance prediction will 

increase (error: the difference between actual and predicted values), and the pavement 

management system will be affected as a result of wrong predictions (Kulkarni, 1984). 

Therefore, the quality of pavement condition data is an important factor for having a successful 

pavement management system. All agencies need to have a Quality Management (QM) in order 

to collect accurate, complete, and reliable pavement condition data. In general, QM is “an 

approach to achieving and sustaining high-quality output” (Flynn, 1994). All transportation 

agencies need to follow the standards and protocols of the American Association of State 

Highway and Transportation Officials (AASHTO) and the Federal Highway Administration 

(FHWA) and apply these standards to their preferred method of QM. 

Good quality pavement distress data is required for accurately evaluating the condition of 

pavement sections. In general, pavement condition data can be determined by measuring 

pavement surface distress, roughness, surface friction, and deflection (Haas, 1994).  

The following is a description of each type of pavement condition data: 

1. Pavement Roughness: pavement roughness refers to pavement surface irregularities that 

can affect the operating cost of vehicles, driver safety, and ride quality (Islam, 2012). 

Because it affects road users, roughness is considered one of the most important 

pavement performance indicators. There are several factors affecting pavement 
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roughness, including climate factors, traffic loading, drainage type, pavement type, and 

construction quality (Kargah-Ostadi, 2014). Highway agencies have also widely used the 

International Roughness Index (IRI) for characterizing pavement roughness as a ride 

quality (Papagiannakis, 1998). 

2. Pavement surface distress: There are different types of distresses based on the type of 

available material such as composite, concrete, and asphalt pavements. Quantification of 

the severity, type, and size of distress is an effective approach for evaluating pavement 

condition. Miller and Bellinger in a 2003 AASHTO report identified 16, 15, and 15 types 

of distress for concrete, asphalt, and composite pavements, respectively. Major distress 

types in different pavement types are as follows: 

 Alligator Cracking:  One of the most significant crack types that can deteriorate 

asphalt pavements over time is alligator cracks caused by repeated traffic loading. 

Alligator cracking occurs when the tensile stress is high, and the pavement is 

carrying loads that the structure cannot sustain (Castell, 2000) (see Figure 1). 

 

 

Figure 1: Sample of alligator cracking (J.Mrugacz, 2016) 
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 Longitudinal Cracking: Longitudinal cracking appears parallel to the centerlines 

of pavement sections as a result of the shrinkage of the asphalt layer, poorly 

constructed joints, improper paver operation, and crack reflection from an 

underlying layer (Colorado DOT, 2004) (see Figure 2). 

 

Figure 2: Sample of Longitudinal Cracking (Ardani, 2003) 

 

 Transverse Cracking: transverse cracking refers to vertical cracks, including 

reflective cracking and shrinkage cracking, in pavement centerline or laydown 

direction. The severity level of transverse cracking depends on pavement 

thickness and base material properties (Zhou, 2010) (see Figure 3). 
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Figure 3: Sample Transverse cracking (Dong, 2013) 

 Rutting: Rutting is a term describing permanent deformation or consolidation that 

accumulates in an asphalt pavement surface over time. Rutting occurs because of 

the movement of the aggregate and binder used in asphalt roads. Rutting severity 

is affected by temperature variation and traffic loading, impacting subgrade 

strength (Archilla, 2000) (see Figure 4). 
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Figure 4: Sample of the rutting (Fussl, 2014) 

 Faulting: a common distress type in concrete pavement is faulting cracking that 

results from vertical displacement between subsequent slabs across a joint 

(Alharbi, 2018). This displacement results in faulting at the transverse joint 

because of pumping action and lack of base support. Faulting is important 

because it can have a negative impact on ride quality (Bektas, 2015) (see Figure 

5). 

 

Figure 5: Sample of faulting (Iowa Airport Pavement Management System, 2020) 
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Pavement Condition Rating 

Based on subjective ratings of rater experience and ride quality (Attoh-Okine, 2013),  

Pavement Condition Rating (PCR), was developed in the 1950s by the American Association of 

State Highway Officials (AASHO). Because the raters’ perceptions, riding quality, and vehicle 

characteristics are subjective, the PCR was not sufficiently accurate to satisfactorily evaluate 

pavement conditions. As a result of this PCR subjectivity, the Pavement Serviceability Index 

(PSI), a more objective system, was developed. The PSI was mainly based on rut depth, panel 

rating, pavement roughness, and cracking (Sun, 2001). The major difference between these two 

rating systems was that PCR is established on individual observations, while the PSI estimated 

the physical pavement features using a formula (Fhwa, 2013). Both these rating systems were 

used by agencies up to 1970s when the Pavement Condition Index (PCI) was developed by the 

U.S. Army Corps of Engineers based on different types of distresses and severity levels 

(Shahnazari, 2012). Since that time, state DOTs have used PCI for pavement evaluation. The PCI 

describes the overall conditions of pavements based on different types of distress, roughness, 

friction, and deflection (Ceylan, 2014). 

Such performance measurement can be used to provide information to pavement 

engineers (Haas, 1994). PCI has a numerical rating between 0 and 100, with 0 defining the worst 

and 100 defining the best conditions for pavement segments. Based on the PCI value, decision-

makers can also evaluate the functionality of the pavement network, predict the best time for 

maintenance and rehabilitation activities, and estimate future funding needs (Bektas, 2014). 

Table 2 is a sample of how the PCI can describe condition categories and general treatment 

strategies in Los Angeles County. 
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Table 2: PCI rating (LA county, 2011) 

 

Pavement Performance Modeling 

A pavement management system could be successful if an accurate performance 

prediction model describes how pavement conditions change over time (Lytton, 1987). Pavement 

performance prediction models can effectively optimize maintenance needs and rehabilitation 

strategies during the pavement service time. Such a prediction model can also help agencies 

identify maintenance activities that should be undertaken (George, 2000). Figure 6 presents a 

typical performance curve as a function of time, with the PCI changing over time. 

 

Figure 6: Pavement performance over time (Kumar, 2012) 
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The figure also represents the impact of maintenance activities on section performance 

and the importance of optimized pavement preservation in maintaining a high-performance level 

at a lower cost. A reliable pavement performance prediction model is required to include long-

term historical data, all important variables that can have an impact on the response variable, and 

criteria for evaluating model accuracy (Darter, 1980). Different types of performance models, 

such as deterministic, probabilistic, neural networks, and knowledge-based (Wolters, 2010) can 

be used in pavement management to predict the future condition of pavement sections. More 

detailed information about these performance models is available in the following chapters. 

Impact of Error in Performance Modeling 

All performance prediction models developed by the deterministic, probabilistic, neural 

network and knowledge-based techniques require accurate data. Frequency of data collection is a 

major factor that can have an impact on data reliability and error. Generally, the error is the 

difference between an actual and a predicted value of any physical quantity. There are no simple 

criteria for determining such errors that can arise out of many causes. Errors are usually 

categorized as either systematic or random, and it is generally difficult to recognize their sources. 

Random errors are the “result of irregular causes in which laws of action are unknown or too 

complex to be investigated, while systematic errors are constant or may vary in some regular 

way” (Saliminejad, 2013).  

Different sources of errors might be present in pavement performance data and 

consequently, in pavement performance prediction. Since a composite condition index, e.g., the 

pavement condition index (PCI), includes the measurement of roughness, distresses, rutting, and 

faulting, and different types of instruments are used to measure these condition indicators 

instrumental error might be increased. On the other hand, another source of error can be 

introduced by subjectivity in determining the severity and type of distress. Field and operator 



www.manaraa.com

12 

conditions are other sources of error that may be introduced. More detailed information about the 

impact of errors in prediction models and data quality are provided in the following chapters. 

The Decision-Making Process in the Pavement Management System  

As mentioned earlier, all pavement performance prediction models can help in predicting 

future pavement conditions and identifying the best treatment strategies. Because each treatment 

activity is qualified to fix specific distresses, they cannot be assigned randomly. Therefore, a 

systematic process is needed to assign treatments to specific distresses, resulting in certain 

conditions. Treatment strategies can be impacted by many factors such as environmental factors, 

pavement type, pavement condition, roadway class, level of traffic, pavement age, cost of 

treatment activities, last construction or rehabilitation timing, availability of skilled contractors, 

availability of quality materials, surface friction, and time of placement (Johnson, 2000).  

Consequently, researchers in state DOTs have developed decision trees and matrices for 

considering as many factors as possible in selecting appropriate treatment strategies. All state 

DOTs consider some common factors such as pavement type, environmental factor, and traffic 

condition for treatment selections. However, because some other decision-making factors differ 

among states, each state DOT has its own methodology for treatment selection. For example, the 

Michigan DOT (MDOT) finds appropriate treatment strategies using specific thresholds it has 

established for distress index, remaining service life, international roughness index, rut depth, 

and riding quality for each pavement type (Abdelaty, 2015). Another example is the Utah DOT, 

which divides roads into three classes based on AADT and selects treatments using predefined 

thresholds, and condition indices (Abukhalil, 2019). The South Dakota DOT selects treatments 

based on the size and severity level of major distresses and decision matrices (Abdelaty, 2015).  

Figure 7 illustrates an example of a decision tree used as a decision support tool to help identify 

appropriate treatments. 
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Figure 7: Sample of the pavement preventive maintenance decision tree (Kronick, 2015) 

Based on the elements of PMS described above and the effectiveness of each treatment 

activity, project prioritization at each level of management can be established. Many research 

studies have developed prioritization techniques such as weighted factors, worst-first, 

mathematical models, and expert judgment (Ahmed 2017, Dessouky 2016, and Dessouky 2011). 

As a result of these techniques, a list of maintenance and rehabilitation activities, estimation of 

funding needs, type, and time of treatment can be identified. 

Problem Statement 

Highway networks serve the public by providing access to critical facilities such as 

hospitals, schools, and markets. Although maintenance and rehabilitation resemble a burden on 

transportation agencies, postponing required road maintenance can result in even higher direct 

and indirect costs (Burningham, 2005). Developing a robust and accurate pavement management 
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system (PMS) is the key to supporting decision-makers at local and state highway agencies. 

Despite the fact that many decision-making processes have been well-established, variability in 

the pavement performance parameters and forecast can have a significant impact on life-cycle 

cost analysis and consequent robustness of a pavement management system (Haas, 2015).  

With advancements in data collection at the network level, pavement performance data 

can now be collected at a high coverage rate (Smadi, 1999). Because of the spatiotemporal 

spread of varying pavement-performance datasets, deterministic pavement performance 

prediction models can be misleading and possibly lead to incorrect decisions with respect to 

maintenance, rehabilitation, reconstruction, and preservation when performing life-cycle cost 

analysis. Although there is a large number of deterioration models described in the literature, 

these models are either oversimplified or too detailed, and therefore increase prediction error. 

Conversely, because maintenance action is directly related to pavement prediction models, the 

effect of errors is not negligible. However, little work has been done to investigate the impact of 

such errors in the decision-making process. 

In this research, a new framework by using deep learning approach was developed to 

increase the prediction accuracy of pavement condition index to make the pavement management 

system and decision-making process more robust. This framework is suitable for pavement 

applications because the data is presented in time series with both low observation frequency and 

high levels of variability. Also, for investigating the effect of error in the decision-making 

process, the output of the new framework was used to find out how prediction accuracy can have 

an impact in the cost of maintenance and rehabilitation activities in the pavement management 

system.  
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Research Goal and Objectives 

The goal of this research is to develop a new framework for pavement deterioration 

models based on historical pavement condition data. Implementation will include pavement 

condition data collected from the Iowa pavement management system between 1998 and 

2018. 

The objectives are as follows: 

1. Develop a new framework using a deep-learning approach, specifically the Long 

Short-Term Memory (LSTM) method, to predict the future condition of composite, 

asphalt, and concrete pavements. 

2. Compare the current method of prediction used in the Iowa DOT with the proposed 

method in terms of accuracy of prediction. 

3. Compare the current method of prediction in the Iowa DOT with the proposed 

method in terms of impact on decision making, specifically the cost of maintenance 

and rehabilitation activities. 

Organization of the Dissertation 

The dissertation contents are divided into four chapters, as follows: 

1. Chapter 1 includes a general introduction, background, problem statement, and the 

research goal and objectives. 

2. Chapter 2 describes the process and outcome of deterioration modeling for three different 

pavement types in the state of Iowa. Deterioration models of PCI as a function of time 

were developed for the different pavement types using two modeling approaches. The 

first approach is the Long/Short Term Memory (LSTM), a subset of a recurrent neural 

network. The second approach, used by the Iowa DOT, is developing individual 
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regression models for each section of the different pavement types. The results of the 

proposed framework are compared with the current Iowa DOT method in terms of 

prediction accuracy. 

3. Chapter 3 describes the effect of prediction accuracy in the decision-making process in 

terms of maintenance costs and rehabilitation activities in different pavement types. The 

result of the prediction model developed in chapter 2 was used in this chapter. Different 

scenarios are investigated while adding different rates of error to the predicted values. 

Iowa DOT decision trees are used to check the effect of the prediction model accuracy in 

terms of cost of treatments in different pavement types. The results of different scenarios 

were compared with the base scenario to check whether decreasing or increasing the 

accuracy of the prediction model can have an effect on the cost of maintenance and 

rehabilitation or not.  

4. Chapter 4, the final chapter, includes general conclusions, recommendations for future 

research work, and limitations of the study. 
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Abstract 

This paper describes the process and outcome of deterioration modeling for three 

different pavement types in the state of Iowa. Pavement condition data is collected by the Iowa 

Department of Transportation (DOT) and stored in a Pavement-Management Information System 

(PMIS). Typically, the overall pavement condition is quantified using the Pavement Condition 

Index (PCI), which is a weighted average of indices representing different types of distress, 

roughness, and deflection. Deterioration models of PCI as a function of time were developed for 

the different pavement types using two modeling approaches. The first approach is the 

Long/Short Term Memory (LSTM), a subset of a recurrent neural network. The second 

approach, used by the Iowa DOT, is developing individual regression models for each section of 

the different pavement types. A comparison is made between the two approaches to assess the 

accuracy of each model. The results show that while the individual regression models achieved 

higher prediction accuracy with respect to asphalt pavements, the LSTM model achieved a 

higher prediction accuracy over time for concrete and composite pavement types. 

Keywords: Long/Short Term Memory (LSTM) model, deterioration model, regression model, 

pavement surface distress, deep learning, prediction accuracy 
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Introduction 

Public agencies use pavement management systems (PMSs) to make objective decisions 

and conduct activities for maintaining pavements in acceptable conditions at minimal cost 

(AASHTO, 2012). Since the early 1970s, departments of transportation (DOTs) and other 

transportation agencies have been implementing and establishing PMSs to match their needs, 

achieving significant savings and improvement in network conditions (Vasquez, 2011). The 

Arizona DOT, for example, saved $14 million and $101 million during the first year and the first 

four years of PMS implementation, respectively (Hassan, 2017). The Colorado Department of 

Transportation (CDOT) uses PMS to efficiently spend its $740 million annual budget for 

maintaining and preserving more than 9,100 center-line miles (about 23,000 total lane miles) 

(Saha, 2017). It appears that there is potential for all such expenses to be more effective if PMS 

improvements can be developed and implemented. 

A major component of any PMS is evaluation and modeling of pavement conditions at 

the network level. Recently, most states have begun to use automated pavement-condition 

surveying tools that generate images from remote sensors to collect distress information and 

report individual distresses through an overall condition index (Ragnoli, 2018). The concept of 

Pavement Condition Index (PCI), was developed by the U.S. Army Corps of Engineers in 1970 

based on different types of distresses and severity levels (Shahnazari, 2012). Since then, most 

DOTs and related agencies have been using the PCI to evaluate pavement conditions. The PCI 

provides important information to pavement engineers by describing overall pavement condition 

based on different types of distress, roughness, and deflection (Ceylan 2014, Haas 2015). The 

PCI is defined as a numerical rating between 0 and 100, with 0 being the worst condition and 

100 the best condition for pavement segments. Based on monitored and modelled PCI values and 

other important condition indices, decision-makers can evaluate the functionality of pavement 
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networks,  predict the best time for maintenance and rehabilitation activities, and estimate future 

funding needs (Bektas, 2014). 

Long and short-term planning of maintenance and rehabilitation activities is the major tool for 

maximizing proper network conditions at the lowest possible cost and requires accurate and 

robust deterioration models for pavement networks. A Deterioration Model (DM) predicts future 

pavement conditions and helps agencies identify the most effective maintenance and 

rehabilitation activities (George 2000, Lytton 1987), and such planning and optimization become 

more critical when agencies face budget reduction or are otherwise budget-constrained (Hassan, 

2017).  

Deterministic, probabilistic, neural network-based, and knowledge-based performance 

models have been used in pavement management to predict future conditions of pavement 

sections (Wolters, 2010). Currently, the Iowa Department of Transportation (Iowa DOT) 

forecasts the future conditions of pavement sections based on individual deterministic regression 

models for each pavement section. Deterministic models assume that the described process is 

nonrandom and that observed differences between predicted and measured values are due to 

random noise in the observation process.  

A deterministic model will thus always produce the same output from a given starting 

condition or initial state. Most deterministic models are based on explicit regression expressions 

and are categorized into the following three subsets ( Li, 1996): 
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1. Empirical Models: An empirical model, solely based on experimental observations, 

provides no explanation of the fundamental behavior through constitutive models. These 

models require large databases for deriving accurate and representative models. Some 

advantages and disadvantages of empirical methods, based on a study reported by Bulleit 

and Ylitalo (de Melo, 2000), are: 

Advantages: 

 The mathematical approach for prediction is not complex 

 The relationship between actual and predicted values can be easily described  

Disadvantages: 

 Model sensitivity 

 Restricted to the conditions used to derive the relationships and not useful for 

extrapolation. 

2. Mechanistic Models: Mechanistic models primarily use laboratory testing data and 

idealized models to mathematically describe fundamental pavement responses like stress, 

deflection, and strain caused by traffic loading and other surrounding conditions (Mills, 

2012). It has been observed over time that sometimes these idealized lab tests and models 

do not reflect actual conditions in the field and may therefore fail to accurately predict 

pavement performance. The availability and feasibility of more recent pavement 

condition assessment tools have resulted in practitioners and agencies avoiding use of 

mechanistic models (Haas, et al., 1994). 

3. Mechanistic-Empirical (ME): While these models are fundamentally based on 

mechanistic models, they are calibrated and coupled with the empirical long-term 

observations from pavement sections under real-life operating conditions. ME models are 
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more representative of actual conditions, because they consider additional parameters like 

traffic loading, climate factors, and material properties. 

Probabilistic models are another group of pavement performance models, an 

alternative to deterministic models that do not provide probabilistic distribution of 

existing values. Markov probabilistic modeling uses samples of probabilistic models, 

with the transition process represented by a pavement-performance curve ( Li, 1996). 

Using information from the pavement’s “before” state, the Markov process predicts the 

“after” state (George, 2000). The Markov transition method is useful in network-level 

applications where neither historical data or good regression equations are available, 

(Shabanpour, 2017). Another advantage of probabilistic models is their use of different 

distributions for finding expected values of the dependent variable. Also, uncertainty with 

respect to environmental conditions, material properties, and traffic loading can be 

captured by these models. The main disadvantage of probabilistic models is that they do 

not consider the effects of pavement aging on transition probabilities (Shabanpour, 2017). 

In addition to Markov models, there are other types of probabilistic models like 

Bayesian decision models, Bayesian regression models, and semi-Markov models, that 

generate survivor curves (Golroo, 2012). The greatest advantages of probabilistic models 

are their capability for capturing uncertainty in the pavement prediction model, and for 

producing more realistic results than deterministic models. 

Over the past few years, Neural Network (NN) applications have received greater 

attention, and many research studies on the application of NNs in transportation and civil 

engineering have been published (Adeli 2001, Dougherty 1995, Flood 2008, Flood & 

Kartam, 1994). Because of their capability for interconnecting neurons between layers, 



www.manaraa.com

27 

NN applications can often solve complex problems more efficiently than traditional 

methods (Basheer, 2000). The capabilities of  Neural Network models for solving 

problems from several pavement-engineering categories are as follows (Ceylan, 2014): 

 Classification: Supervised learning in neural networks can be used to deal with 

unknown inputs. Neural network models have been used to investigate the 

classification of pavement distresses from digital images (Nallamothu, 1996). 

Another research study by Hu (2001) reported using a neural network to detect 

pavement cracks. 

 Performance Prediction: Neural Networks have been used in various studies as 

powerful and versatile computational tools for both determining the performance 

of existing pavement systems and predicting future conditions. The Pavement 

Distress Index (PDI), based on surface thickness, pavement age, and traffic level, 

was predicted using a NN model that outperformed other multiple-linear 

regressions (Owusu-Ababio, 1998). A back-propagation neural network model 

was developed by (Lin, 2003) for predicting IRI based on pavement distress. 

 Optimization and maintenance strategies: Neural networks have been used as 

computational tools to determine which maintenance and rehabilitation actions 

should be performed on deteriorated pavement sections, using a hybrid NN and 

Genetic Algorithm method developed for optimizing maintenance strategy of 

flexible pavements (Taha, 1995). 

 Distress Prediction: Neural networks can help pavement engineers predict future 

distresses, and a multi-layer perceptron back-propagation NN with one hidden 
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layer has been used to predict future roughness distress in flexible pavements 

(Huang, 1997). 

NNs could be a powerful alternative to traditional techniques that are always limited by 

normality, linearity, and colinearity assumptions. Two major advantages of using NNs are their 

ability to model complex and nonlinear large amounts of data, and detect all possible interactions 

between predictor variables. 

It should be mentioned that, because pavement deterioration happens over time, it is 

important to include the dependency of performance measures on historical data (time) in a 

prediction model. Accurate time-series prediction is also critical for abnormality detection, 

resource allocation, and financial planning (Laptev, 2017). Predicting data time-dependency is 

challenging because such prediction depends on external factors like weather and traffic load 

(Horne, 2004). Time-series analysis works better with highly-correlated measurements over 

time, because explanatory variables may fail to explain the correlation mechanisms. On the other 

hand, in regression analysis the explanatory variables should sufficiently explain the trend, 

resulting in independent fitting residuals. 

A deep-learning method designed for sequential data is the Recurrent Neural Network 

(RNN) that has recently received additional attention from researchers primarily because of its 

capability in learning sequences (Graves 2010, LeCun 2015, Sutskever 2013). RNNs have been 

widely applied to many time-dependent datasets for use in prediction problems like speech 

prediction, pattern prediction, economic prediction, and traffic prediction (Busseti 2012, Martens 

2011, Wong 2010). Since RNNs are developed to utilize historical data in time-series analysis, 

inclusion of a regression model that relies on explanatory variables and historical data of the 

response variable improved the model accuracy. These networks are designated as recurrent 
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because future forecasting depends on both current and previous stages. Several RNN algorithms 

such as the Long Short Term Memory (LSTM) network have been developed over the past two 

decades. LSTM was introduced to support modeling and forecasting of long-term data series. 

The network was developed to overcome the vanishing gradient problem in which algorthims 

tend to accumulate errors when a long string of observations are added as predictor variables, 

increasing prediction variability and associated total error. Based on the literature, another RNN 

network called the Gated Recurrent Unit (GRU) also solved the vanishing gradient problem, but 

the LSTM outperformed the GRU in many details. 

In this study, the LSTM was used for time-dependent prediction of the pavement 

condition index. This network is suitable for pavement applications because the data is presented 

in time series with both low observation frequency and high levels of variability. The goal of this 

study was to develop a new robust deterioration model suitable for long term forecasting, in 

which the model performance can be objectively evaluated. An LSTM network will utilize 

historical pavement condition records of the Iowa DOT Pavement Management Information 

System (PMIS) in the time span between 1998 and 2018. The new time series algorithm, a deep-

learning approach specifically developed by LSTM networks, was used to predict future 

conditions of the three different pavement types. The Keras software package, a high-level 

neural network API written in Python, was used for generating the LSTM model with a focus on 

enabling fast experimentation. This package uses a deep-learning open-source library based on 

the TensorFlow software library. The performance and results of the new algorithm are 

compared to the current method used by Iowa DOT for deterioration modeling. 
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Methodology 

Figure 8 shows the steps required to be completed in the proposed method, with the 

individual steps described in detail in the following subsections.  

 

Figure 8: Research Steps 

 

Data 

To develop and implement the new framework, historical records of pavement condition 

data were acquired from the Iowa DOT Pavement Management Information System (PMIS). 

These data were collected for Iowa’s interstate and primary network since 1997, the year in 

which the Iowa DOT began collecting automated pavement distress data (Bursanescu, 1997). 

The data used in this study were acquired between 1998 and 2018, and include information 

regarding highway system classification, construction and reconstruction dates, unique section 

identifiers, traffic levels, automated pavement distress data, faulting, and pavement ride quality. 

Data Collection

Preprocessing

Developing LSTM

Model Training

Model Validation

Comparison
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The pavement types included in the study were asphalt concrete (AC), Portland cement concrete 

(PCC), and composite (COM) pavements.  

The pavement distress information collected includes rutting and cracking data such as 

transverse cracking, longitudinal cracking, alligator cracking, wheel-path cracking, and patching, 

with low, medium, and high severity levels assigned to cracking data for all pavement types. For 

AC and COM pavements, rutting was reported as the average rut depth in both wheel paths, and 

for PCC pavements faulting was estimated using the acquired longitudinal profile. The 

international roughness index (IRI) was also used to characterize ride quality for all pavement 

types. Pavement condition data is collected in two-year cycles in which half the network is 

surveyed every other year. The Iowa DOT spends about $1 million annually on collecting 

pavement condition data (Bektas, 2014). 

In many cases, minor maintenance and rehabilitation records were not available, so the 

maintenance impact on pavement condition overtime was not modelled in this study. Moreover, 

segments with PCI values increasing over time were discarded from the analysis because they 

might be associated with unrecorded maintenance activities. A ten-point PCI increase was 

arbitrarily considered to be a normal fluctuation due to measurement errors or seasonal impacts. 

Figure 9 shows the number of different sections for each pavement type, with the descriptive 

statistics for each pavement type given in Table (3). The total number of data records for all 20 

years time frame was comprised of 3,805 AC records, 14,117 COM records, and 13,123 PCC 

records. 
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Figure 9: Number of sections in each pavement type 

Table 3: Summary statistic of pavement sections (Alharbi, 2018) 

Pavement Types Average Length 

(Miles) 

Minimum Length 

(Miles) 

Maximum Length 

(Miles) 

AC 3.88 0.16 18.61 

PCC 2.7 0.05 18.91 

COM 2.69 0.05 18.14 

 

Preprocessing 

After collecting and arranging the data based on pavement type, condition indices were 

estimated using the reported condition data. Pavement condition can be summarized using four 

scaled indices with values ranging from 0 to 100, with 0 corresponding to the worst condition 

and 100 to the best condition. These indices can then be used to calculate the overall PCI using 

the same scale for individual indices, resulting in the definition of a global index for comparing 

different pavement types. In this study, the indices were calculated based on definitions provided 

in a previous study for the Iowa DOT (Bektas, 2014) and included: 

 Riding Index 

 Rutting Index (AC and COM Only) 

 Cracking Index 
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 Faulting Index (PCC Only) 

In AC and COM pavements, four different cracking sub-indecies were used to calculate 

the cracking index; these included transverse, longitudinal, alligator, and longitudinal-wheel-path 

cracking. Only two sub-indecies, transverse and longitudinal cracking, were used to characterize 

PCC pavements. Three severity levels were used by the Iowa DOT in evaluating pavement 

distresses, with 1, 1.5, and 2 coefficient values, used for low, medium, and high aggregated 

severities, respectively. All severity levels were then converted into low severity. Since a 

maximum value (threshold) corresponds to a deduction of 100 points, a cracking sub-index of 0 

was determined for each crack type within pavement type, and all threshold values were 

extracted from a previous Iowa DOT study (Bektas, 2014). The cracking index values for all 

three pavement types, based on the coefficient values provided by Iowa DOT experts, were as 

follows: 

𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 (𝐴𝐶 𝑎𝑛𝑑 𝐶𝑂𝑀)

= 0.2 ∗ (𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.1 ∗ (𝐿𝑜𝑛𝑔𝑖𝑡𝑖𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.3

∗ (𝑊ℎ𝑒𝑒𝑙 − 𝑝𝑎𝑡ℎ 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) 

𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐶𝐶)

= 0.6 ∗ (𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝐿𝑜𝑛𝑔𝑖𝑡𝑖𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) 

The International Roughness Index (IRI) is the most commonly used ride-quality index. 

The Riding Index used in this study was based on the IRI acquired by the Iowa DOT and 

expressed on a scale of 100. IRI values below 0.5m/km were taken as a perfect 100, while values 

above 4.0m/km were taken as 0 on the index scale. Other values between 0.5 and 4 m/km were 

calculated using linear interpolation. 
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Rutting is defined as the permanent total deformation or consolidation accumulated in an 

asphalt pavement surface wheel path. The rutting index from this study used rut depths available 

in the PMIS database, and, based on previous research, a threshold value of 12 mm corresponded 

to 0 on the rutting Index scale of 100, and values below 12 mm were applied as corresponding 

deductions. 

Faulting is defined as the difference in slab elevation across a joint or crack occuring due 

to differential vertical displacement between two sides. Similar to the rutting index for AC 

pavements, the faulting index is expressed on a scale of 100, with the faulting value equal to or 

greater than 12 mm set to 0 and the faulting value equal to zero set to 100 on the index scale 

(Bektas, 2014). 

After calculating all cracking, riding, rutting, and faulting indecies for AC, COM, and 

PCC pavements, a weighted average formula was used to calculate the PCI values. The current 

formulae for calculating the PCI for AC, COM, and PCC pavements are as follows (Bektas, 

2014): 

𝑃𝐶𝐼 (𝑃𝐶𝐶) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 

𝑃𝐶𝐼 (𝐴𝐶) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 

𝑃𝐶𝐼 (𝐶𝑂𝑀) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 

Based on PCI values, the Iowa DOT classifies pavement condition for the interstate 

highway system as good, with a PCI value between 76-100, fair, with a PCI value between 51 

and 75, and poor, with a PCI value between 0 and 50. Based on these classifications, 

approximately 91% and 79% of the interstate highway system and the non-interstate highway 
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system in the state of Iowa was categorized as good condition pavement up to the end of 2017 

(Iowa DOT Transportation Asset Management Plan, 2018). 

Developing the Long Short Term Memory (LSTM) Deterioration Model 

To predict the future condition of individual pavement sections a modified RNN 

algorithm called LSTM was used in this research. While in conventional feed-forward neural 

networks, all observations are considered independent, the models in RNN consider the effects 

of previous observations and therefore account for the correlation between consecutive 

observations. It is worth mentioning that RNNs can work properly only with short term 

dependencies, and for making an accurate prediction with an RNN, having information from 

previous stages is mandatory. In fact, an RNN fails when too many inputs from historical 

observations are used. Observations added as predictor variables will increase variability in the 

predictions and the total error, a phenomenon referred to as the vanishing gradient effect. 

Generally, in feed-forward neural networks, the multiplication of errors from previous layers, 

rate of learning, and input for a layer define the updating weight for the following layer. As a 

result of several multiplications of the small value of activation-function derivatives (Sigmoid, 

Tanh, ReLU), the gradient approaches zero, increasing training complexity and causing 

information loss within the training layers. To overcome this limitation, LSTM was proposed as 

a modified version of traditional RNNs while taking advantage of the effectiveness of RNN 

methods. 

The information in LSTMs flows through a cell states mechanism in which LSTMs can 

selectively either forget or remember information based on its impact on model performance 

(Chris Olah, 2015). Figure 10 is a schematic of the repeating module in an RNN that goes 

through three major steps. 
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Figure 10: Schematic of Repeating Module in RNN (Chris Olah, 2015) 

In the first step, the LSTM passes the output from the previous time step (𝑡 − 1) to the 

forget gate, where it is classified using the sigmoidal function shown in Equation 1 either as 

significant information passed to the next step in the training or insignificant information 

dropped from the training model. 

𝐹𝑡 =  𝜎(𝑊𝑓[ℎ(𝑡 − 1), 𝑋𝑡]) + 𝑏𝑓                                                                                                      (1) 

where 𝐹𝑡 represents the forget gate, 𝜎 is the Sigmoid function, 𝑊𝑓 represents the weight for 

the forget gate neurons, ℎ(𝑡 − 1) is the output of a previous LSTM block at time(𝑡 − 1), 𝑋𝑡 

represents the input at the current time step, and 𝑏𝑓 represents biases for the forget gate. 

In the second step, the LSTM decides what new information should be stored in the cell state 

by identifying values requiring updating by the Sigmoidal function and the vector of new 

candidate values created by the Tanh function that could be added to the next state. These two 

functions are shown in Equations 2 and 3: 

𝐼𝑡 =  𝜎(𝑊𝑖[ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑖                                                                                                     (2) 

𝐶´𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑐                                                                                            (3) 



www.manaraa.com

37 

where I𝑡 represents the input gate, 𝑊𝑖 represents the weight for respective gate neurons, 𝑋𝑡 represents 

the input at the current time step, and 𝐶´𝑡 represents the candidate for cell state at time step (t). 

By combining information from the previous cell and the input gate from the current time step, the 

information for the later step will be updated. Equation 4 represents how information is filtered from the 

forget gate layer combined with new information from the current time step. Other Sigmoid and Tanh 

functions help the LSTM cell decide what information should be taken as output. Equations 5 and 6 

represent the Sigmoidal and Tanh functions in the last step: 

𝐶𝑡 = 𝐹𝑡 ∗ 𝐶(𝑡 − 1) +  𝐼𝑡 ∗ 𝐶´𝑡                                                                                                      (4) 

𝑂𝑡 =  𝜎(𝑊𝑜[ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑜                                                                                                  (5) 

ℎ𝑡 =  𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡)                                                                                                                    (6) 

where 𝐶𝑡 is a cell state (memory) at time step (t), O𝑡 represents the output gate, and h𝑡 

represents the output of the LSTM block at time step (t). 

Model Training 

For the learning process in the LSTM algorithm, the dataset corresponding to PCC and 

COM pavements is divided into training (70%) and validation (30%) sets. Because the number 

of records in AC pavements was less than that of the two other pavement types, the database was 

divided into training (80%) and validation (20%) sets for AC pavements. The training dataset 

was used for developing the model and conducting the learning process, while the validation 

dataset was used for checking the accuracy of the model. 

Validation 

Model validation is performed to confirm that the output of the statistical model is 

acceptable with respect to the collected data (actual data). In order to evaluate any machine 
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learning model, it is necessary to test the model with data not used in the training set. In this 

study, a Train_Test split approach was used for Cross-Validation (CV), a validation technique 

that checks the effectiveness of the machine-learning model. After performing model training on 

70% of the database (the training dataset), the validation dataset was used as a test sample to 

validate model performance. 

Comparison 

The LSTM model performance was compared with the sigmoidal and exponential 

functions used by Iowa DOT to fit deterioration models for individual sections. The accuracy of 

each model with respect to riding, cracking, and rutting in AC and COM pavement types, and 

riding, cracking, and faulting in PCC pavement types were compared for both models. 

Result and Discussion 

In the following sections, the application of each modeling approach in the databases of 

the three different pavement types is described and the results are presented and discussed. The 

overall results from both models are presented in Table 4, with the actual value of each index 

compared with the predicted value of the same index from the LSTM and Iowa DOT regression 

models. 

The Iowa DOT has an individual regression model for each individual section with 

specific factors for predicting the future condition of the pavements based on age. While the 

sigmoidal transformation functions were applied to cracking, rutting, and faulting indices, the 

exponential function was used to fit the riding index. Based on the actual and predicted values of 

each index, the PCI value was calculated for each pavement type. Figures (11-13) present the 

comparisons between actual PCI value and predicted PCI value for each pavement type in the 

DOT and LSTM models. 
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Table 4: Summary statistic of each model on the test dataset 

 

 

 

   Actual mean Predicted mean Actual standard deviation Predicted standard deviation R-square 

PCC DOT PCI 58.06 68.63 23.18 19.14 0.44 

Crack 79.62 83.02 23.83 17.56 0.26 

Fault 61.27 99.74 20.04 0.21 -3.68 

Ride 34.89 38.69 39.55 37.82 0.66 

LSTM PCI 58.06 54.13 23.18 21.12 0.70 

Crack 79.62 67.67 23.83 20.95 -0.26 

Fault 61.27 62.78 20.04 14.30 0.62 

Ride 34.89 36.27 39.55 40.48 0.86 

COM DOT PCI 68.71 78.66 19.61 17.9 0.11 

Crack 62.91 78.08 19.74 15.75 -0.05 

Rut 60.44 98.36 17.35 0.57 -4.7 

Ride 78.64 74.51 32.41 34.35 -0.02 

LSTM PCI 68.71 72.48 19.61 17.55 0.50 

Crack 62.91 66.01 19.74 16.88 0.39 

Rut 60.44 61.92 17.35 15.35 0.19 

Ride 78.64 84.23 32.41 29.03 0.43 

AC DOT PCI 71.02 82.95 19.58 17.73 0.31 

Crack 64.11 80.88 24.52 16.02 0.15 

Rut 64.05 98.42 15.14 0.47 -5.11 

Ride 81.51 77.29 29.83 33.73 0.55 

LSTM PCI 71.02 72.89 19.58 17.36 0.61 

Crack 64.11 67.08 24.52 21.78 0.35 

Rut 64.05 63.74 15.14 12.33 0.19 

Ride 81.51 83.28 29.83 27.65 0.61 
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Figure 11: The Actual PCI over Predicted PCI in AC sections for DOT and LSTM models 

respectively 
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Figure 12: The Actual PCI over Predicted PCI in COM sections for DOT and LSTM models 

respectively 
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Figure 13: The Actual PCI over Predicted PCI in PCC sections for DOT and LSTM models 

respectively 



www.manaraa.com

43 

It should be noted that the evaluations of the regression models are restricted to the 

residuals between the fitted functions and the actual readings, although the LSTM evaluation was 

based on its ability to predict full performance curves not included during the training stage. For 

validating the prediction results of the individual regression models and comparing the results of 

the current Iowa DOT method with LSTM models, 50 AC, 80 PCC, and 80 COM sections were 

tested. The results were compared with the actual value of each index. 

The comparison included models developed for AC, COM, and PCC pavements. R-

square and Standard Error of Estimate (SEE) were considered to evaluate the accuracy of the 

models. The R-square and SEE functions are shown in equation 7 and 8: 

𝑅2 = 1 − (
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
) = 1 − (

(∑ (𝑌𝑖−𝑖  𝑌�̂�)2)

∑ (𝑌𝑖−𝑌𝑖)𝑖
2 )                                                                             (7) 

𝑆𝐸𝐸 =  √∑(𝑌𝑖 − 𝑌�̇�)/𝑁                                                                                                                (8) 

Where 𝑌𝑖 is the actual value, 𝑌�̂� is the predicted value, 𝑌𝑖 is the average of actual values, and N 

represents the number of observation. 

The results for AC pavements showing that the LSTM model got higher prediction 

accuracy, compared to the individual DOT regression models. The R-square values in the LSTM 

models were 0.61 for the riding index, 0.19 for the rutting index, 0.35 for the cracking index, and 

0.61 for the PCI. This is while the values for the DOT models were 0.55, -5.11, 0.15, and 0.31, 

respectively. It is worth mentioning, that, R-square is defined as the proportion of variance 

explained by the fit, if the fit is actually worse than just fitting a horizontal line, then R-square is 

negative. Also the result of SEEs for both models indicates that the LSTM model got less 

standard error of estimate, compared to DOT models. The SEE values in the LSTM models were 

18.66 for the riding index, 19.74 for cracking index, 13.58 for rutting index, and 12.18 for the 
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PCI. This is while the values for the DOT models were 20.08, 22.57, 37.40, and 16.17, 

respectively.  

Also The results for COM pavements showing that the LSTM model got higher 

prediction accuracy. The R-square values were 0.43 for the riding index, 0.19 for the rutting 

index, 0.39 for the cracking index, and 0.50 for the PCI in LSTM models, while the 

corresponding values for the DOT models were -0.02, -4.7, -0.05, and 0.11, respectively. Also 

SEE metrics for both models indicates that the LSTM model got less standard error of estimate, 

compared to DOT models. The SEE values in the LSTM models were 24.5 for the riding index, 

15.29 for cracking index, 15.57 for rutting index, and 13.78 for the PCI. This is while the values 

for the DOT models were 32.7, 19.72, 41.48, and 18.46, respectively. 

Also, the LSTM model outperformed DOT’s regression models with respect to PCC 

pavements. Fluctuations in the PCC database due to maintenance activities were less than the 

two other pavement types. The R-square values were 0.86 for the riding index, 0.62 for the 

rutting index, -0.26 for the cracking index, and 0.70 for the PCI in LSTM models, and the 

corresponding values in the DOT models were 0.66, -3.68, 0.26, and 0.44, respectively. Also the 

result of SEEs for both models indicates that the LSTM model got less standard error of 

estimate, compared to DOT models. The SEE values in the LSTM models were 14.71 for the 

riding index, 26.83 for cracking index, 12.4 for faulting index, and 12.51 for the PCI. This is 

while the values for the DOT models were 22.96, 20.37, 43.35, and 17.21, respectively. 

Figures (14-16) also reflect the effect of age on the prediction residuals for each model in 

both the short and long term duration. These results show that the errors will more significantly 

widen and fluctuate after the first five years of pavement age for all three pavement types. 

Residuals can generally be either positive or negative; however consistent differences between 
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the predicted and observed values to one side of the prediction model is referred to as bias, and 

the variability in the mean observed value of these residuals is referred to as variance. Bias can 

be formally defined as the expected value of the model residuals, as shown in Equation 9. 

𝐵𝑖𝑎𝑠 = 𝐸[�̂� − 𝑦] ≈
1

𝑁
∑ 𝜖𝑁

𝑖=1                                                                                                         (9)  

Where �̂� is the predicted value, 𝑦 is the observed value, and 𝜖 is the model residual 𝜖 = �̂� − 𝑦. 

As can be seen in Figures (14-16), the DOT regression models show a consistently higher 

bias as the average line deviates from the zero value. To check whether the bias of the DOT 

regression model was significantly higher or lower than the LSTM model bias a hypothesis test 

was performed to calculate the regression and LSTM models average absolute residual values. 

To determine the possibly unequal residual variance between the models, the Kolmogorov-

Smirnov test, a non-parametric test that allows for testing with unequal variances, was 

performed. Results showed that the regression model had a significantly higher bias with a 

negative value, meaning that the regression model will consistently overestimate the index 

values and result in less conservative predictions. The means of the residual of the PCI for the 

LSTM and DOT models were (3.93, -10.57) for PCC, (-1.87, -11.93) for AC, and (-3.77, -9.94) 

for COM pavement types. Even though the variance of the residuals increased in the LSTM over 

time, the mean of the residual in the LSTM model was still less than that of the regression 

models. The solid black line and dotted blue line in the figures show how the mean errors 

changed over time.  



www.manaraa.com

46 

 

Figure 14: PCI Residual vs Age in AC pavements 

 

Figure 15: PCI Residual vs Age in COM pavements 
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Figure 16: PCI Residual vs Age in PCC pavements 

 

Conclusion 

The deterioration models of the historical pavement condition data for the state of Iowa 

were developed using an LSTM approach. The proposed model and current method in Iowa 

DOT were compared to investigate the model accuracy. The comparison between the developed 

model and the individual regression models used by the Iowa DOT from the three different 

pavement types indicates that prediction accuracy in the LSTM model is higher than individual 

regression models. 

The LSTM achieved a higher PCI prediction accuracy than the individual regression 

models in all three pavement types. A hypothesis analysis of mean was conducted for the PCI 

residual in both techniques and the results exhibit less LSTM bias than that of individual 

regression models. 

Overall, each of these two methods has its own advantages and disadvantages. The 

equation of the individual regression models requires an annual update, and each section will 
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exhibit a new year-by-year behavior, making the prediction process more complex. The LSTM is 

only one more consistent model compatible for all sections using a training process. The LSTM 

approach was sensitive to the data fluctuation resulting from unrecorded maintenance activities. 

While the evaluation of the regression models was restricted to residuals between the fitted 

functions and the actual readings, the evaluation for the LSTM was based on its ability to predict 

full performance curves not included during the training stage. 
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Abstract 

One of the most important components of pavement management systems is predicting 

the deterioration of the network through performance models. The accuracy of the prediction 

model is important for prioritizing maintenance action. This paper describes how the accuracy of 

prediction models can have an effect on the decision-making process in terms of the cost of 

maintenance and rehabilitation activities. The process is simulating the propagation of the error 

between the actual and predicted values of pavement performance indicators. Different rate of 

error was added into the result of prediction models. The results showed a strong correlation 

between the prediction models’ accuracy and the cost of maintenance and rehabilitation 

activities. Also, increasing the rate of error contribution to the prediction model resulting in a 

higher benefit reduction rate. 

Keywords: Prediction accuracy, pavement management system, decision-making, 

maintenance assignment, benefit optimization  
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Introduction 

With an ageing transportation network, highway agencies are finding it challenging to 

maintain their deteriorating assets in good condition. Given the limited budget to maintain the 

network, departments of transportation (DOTs) need to efficiently manage their assets to satisfy 

network-level goals. 

The Transportation Asset Management Plan (TAMP) is “the strategic and systematic 

process of operating, maintaining, upgrading, and expanding physical assets effectively 

throughout their life cycle” (MnDOT, 2016). In 2012, the US Congress passed the Moving 

Ahead for Progress in the 21st Century Act (MAP-21), which requires each state DOT to present 

a risk-based asset management plan to maintain and improve their infrastructure condition 

(Corley-Lay, 2014). MAP-21 requires evaluating the pavement condition of highways through 

its infrastructure conditions criteria. Another legislation, known as Fixing America's Surface 

Transportation (FAST), also passed in 2015 to support performance-based asset management 

methods. Pavement and bridge assets are prioritized in both acts, and highway agencies spend 

the biggest portion of their budget on maintaining and preserving these two assets every year. 

Although Departments of Transportation (DOTs) are actively maintaining their 

transportation assets, the 2017 infrastructure report card shows that US roads are in a fair to poor 

condition with a D GPA (American Society of Civil Engineers, 2017). The biggest problem that 

keeps the US roads in a fair to poor condition is that the US has had a financial shortcoming in 

its highway system for many years. As a result of this shortcoming, the US has $836 billion 

backlogs in highway and bridge capital. The biggest portion of this backlog ($420 billion) is for 

repairing the highway system. So, a systematic way to optimize this limited funding is needed to 

maintain and preserve the highway system. 
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To achieve the TAMP goals, the Pavement Management System (PMS) presents a 

support tool to derive objective decisions to keep the pavements in an acceptable condition at a 

minimum cost (AASHTO, 2012). Significant savings and improvement were observed in the 

network condition since the 1970s when DOTs established and implemented their own PMSs to 

match their needs (Vasquez 2011, Smadi 2004). Arizona DOT uses PMS for maintenance action 

in a 7400-mile network of highways and recognizing the minimum funding required to 

implement the maintenance program (Golabi, 2019). Also, they saved $101 million in the first 

four years of implementation of PMS (Hassan, 2017). A comprehensive PMS involves collecting 

data, inspecting the road network, predicting network deterioration through performance models, 

and optimizing maintenance and rehabilitation activities over the planning horizon. 

The decision levels in PMS are categorized into the project level, network level, and 

administrative level. Figure 17 shows the hierarchical decision level in the pavement 

management system (Li, 2005). 

Funds are allocated to different transportation asset categories at the administrative level. 

The goals of network-level management are normally related to the budget process. These goals 

include identifying the maintenance, rehabilitation, and reconstruction needs, determining the 

funding needs, forecasting the impact of various funding options in the future, and prioritizing 

the maintenance activities for the selected funding option. In case of a limited budget, network-

Administrative Level

Network Level

Project Level

Figure 17: PMSs decision levels 
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level management selects sections based on criteria such as the least cost first, the worst section 

first, and the highest benefit-cost ratio. At the project level, detailed maintenance and 

rehabilitation treatments and the best strategy for maintenance actions will be identified. 

Pavement condition evaluation is necessary for making an efficient decision at each of these 

decision levels. 

Evaluating and modeling of pavement conditions is a major part of all PMSs. Nowadays, 

almost all state DOTs are using automated surveying tools to evaluate pavement conditions. The 

data collection covers pavement distress data such as transverse cracking, longitudinal cracking, 

alligator cracking, wheel-path cracking, patching, and surface friction. To summarize the 

pavement condition, the U.S Army Corps of Engineering developed the Pavement Condition 

Index (PCI) in the 1970s. The index represents a weighted average of sub-indices, reflecting the 

severity levels of different distress types (Shahnazari, 2012). Since then, PCI has been widely 

used to represent the pavement condition (Haas, 1994). PCI has a numerical value between 0 and 

100, where 0 defines the worst and 100 defines the best condition for pavement segments. Also, 

based on the value of PCI, decision-makers can evaluate the functionality of the pavement 

network, predict the best time for any maintenance and rehabilitation activities, and estimate 

future funding needs (Bektas, 2014). 

These activities need to be prioritized in order to minimize the cost of maintenance 

activities and maximize the life cycle of the network (Donev, 2018). To reach this goal, a robust 

and accurate deterioration model is needed. Maintenance optimization is sensitive to 

deterioration models that describe the change in pavement condition over time (Lytton, 1987). 

By reducing the error in deterioration models, agencies can obtain significant budget savings 

through timely intervention and accurate planning (Madanat, 1993). The pavement management 
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system could be successful if an accurate deterioration model optimizes the maintenance and 

rehabilitation strategies during the pavement service time. Also, deterioration models can help 

agencies identify what maintenance activities are needed (George, 2000). Long-term and short-

term planning that become possible with deterioration models is even more critical when 

highway agencies have a shortcoming in funding (Hassan, 2017). 

There are different types of deterioration models used in the pavement management 

system to help decision-makers predict the future condition of pavement sections.  Wolters and 

Zimmerman categorized these models in probabilistic, deterministic, knowledge-based, and 

neural networks (Wolters, 2010). The deterministic model is a system in which no randomness is 

involved in the development of the future states of the system. Structural performance, function 

performance, primary responses, and damage models are all included in deterministic models. 

The base of the most deterministic models is regression. Also, deterministic models can be 

broken into empirical models, mechanistic models, and mechanistic-empirical models ( Li, 

1996).  

Probabilistic models predict the future condition of pavements by giving a transition 

matrix with which the pavement would fall into a particular condition state, describing the 

possible pavement conditions of the random process. Neural Network (NN) models have got 

more attention in the past few years between researchers because of their capability to 

interconnect neurons between layers. NN applications can solve complex problems in a more 

efficient way than traditional methods (Basheer, 2000). These problems can be in different 

categories of pavement engineering, based on research conducted by Ceylan in 2014 (Ceylan, 

2014). Deterioration models attempt to fit time series data with low observation frequency and 

high levels of variability, which can be properly captured using Recurrent Neural Networks 
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(RNN). In the past few years, many different RNN algorithms have been developed by 

researchers, including the Long Short Term Memory (LSTM), introduced to allow for modeling 

and forecasting long term data series. 

All these DMs are designed to predict the future condition of pavement sections so that 

maintenance and rehabilitation activities can be planned. Each activity is suitable for specific 

distress and decision-makers cannot apply one treatment to all types of distresses. Because each 

pavement section can have more than one distress type and each distress type has its own 

treatment solution, state DOTs have defined their own decision trees for applying specific 

treatments to specific road sections with specific conditions. Nevertheless, all state DOTs have 

some mutual factors for selecting these treatments, such as the traffic condition, environmental 

factors, and pavement type. The treatment selection process is different in each state based on 

their pavement condition evaluation process. Some state DOTs use optimization routines for 

treatment assignment and some others use threshold value for assigning the treatment strategies. 

In order to maximize the effectiveness of treatments, treatment effectiveness needs to be 

defined. There are different definitions available, such as extending the life of the pavement by 

treatments, improving the pavement deterioration curve by treatment, and the service life of the 

treatments. In general, however, treatment effectiveness is how well a treatment works during the 

pavement age so that the need for another treatment is eliminated. The right treatments can not 

only improve the pavement condition but also decrease the rate of deterioration of the pavement 

sections. 

The uncertainties in pavement performance prediction produce errors which are classified 

into random and systematic errors. These type of errors can be due to human involvement (such 

as errors happening during data entry, data preprocessing, and visual rating) or be technology 
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errors (such as those that come from the instrument). Random errors are the “result of irregular 

causes in which laws of action are unknown or too complex to be investigated. However, 

systematic errors are constant or may vary in some regular way” (Saliminejad, 2013). 

Saliminejad and Gharibeh have proven that even acceptable ranges of systematic and random 

errors could have an impact on the output of the PMS and average annual budget. Based on a 

study by Haider and Chatti, unbiased sampling can reduce the rate of systematic errors; however, 

increasing the sample size can reduce the rate of random errors (Haider, 2011). In PMS, positive 

error in condition data (overestimating the condition index and underestimating distress) is less 

effective than the negative error (underestimating the condition index and overestimation of 

distress). 

Different sources of errors might be introduced in pavement performance data and 

consequently, in pavement performance prediction. A composite condition index (for instance, 

the pavement condition index (PCI)) includes the measurement of roughness, distress, rutting, 

and faulting. The instrumental error might increase because of using different types of 

instruments to measure these condition indicators. On the other hand, another source of error can 

be introduced due to the subjectivity in the determination of severity and type of distresses. Also, 

another source of error may be introduced due to field and operator conditions. Because the 

maintenance actions in each state DOT is directly related to pavement prediction models, the 

effect of errors is not negligible. However, little work has been done to investigate the impact of 

errors in the decision-making process. 

In this research, the result of the pavement prediction model (LSTM model), already 

developed in a previous study is used (Hosseini, 2020). LSTM is used for time-dependent 

prediction of the pavement condition index. The goal of this study is to investigate the effect of 
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prediction accuracy in the decision-making process in terms of maintenance costs and 

rehabilitation activities in different pavement types. Historical pavement condition data of the 

Iowa DOT Pavement Management Information System (PMIS) between 1998 to 2018 were used 

for developing the prediction model. Different scenarios are investigated while adding different 

rates of error to the predicted values. Iowa DOT decision trees are used to check the effect of the 

prediction model accuracy in terms of cost of treatments in different pavement types. The results 

of different scenarios were compared with the base scenario to check whether decreasing or 

increasing the accuracy of the prediction model can have an effect on the cost of maintenance 

and rehabilitation or not. 

Methodology 

Figure 18 represents the steps involved in completing this research study. Each individual 

step is described in detail in the following subsections.  

 

Figure 18: Research Steps 
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Data 

Information regarding the highway system, including construction history, section 

identification, maintenance history, pavement age, traffic loading, and pavement distresses are 

available in the Iowa DOT PMIS database and was used to develop the prediction model in the 

previous study (Hosseini, 2020). The condition data of pavement sections from 1998 through 

2018 was used for model development purposes. The data collection covered pavement 

distresses data such a transverse cracking, longitudinal cracking, alligator cracking, wheel-path 

cracking, patching, and surface friction. Three severity levels are assigned to distresses data: low, 

medium, and high, for all pavement types. Rutting depth for asphalt and composite pavements 

and faulting for concrete pavements have also been collected. The international roughness index 

(IRI) was used to characterize ride quality for all pavement types. The Iowa DOT spends about 

$1 million annually on collecting pavement condition data (Bektas, 2014). 

The pavement types included in the study were asphalt concrete (AC), Portland cement 

concrete (PCC), and composite (COM) pavements. For training the prediction model, 477 AC 

sections, 1562 PCC sections, and 1830 COM sections were used. The lengths of these sections 

were varied between 0.05 to 18 miles, making a large impact on treatment costs. 

Preprocessing 

After the data collection process, condition indices were estimated using the reported 

condition data. In the current database, different types of units are used for each distress type. 

Since the PCI is based on a scale of 100, individual indices and sub-indices were also estimated 

on a scale of 100 in order to make comparison easier. In this study, four individual indexes are 

used for AC, COM, and PCC pavements: 

 Riding Index 

 Rutting Index  
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 Cracking Index 

 Faulting Index 

The overall PCI is the combination of riding, rutting, and cracking indices for AC and COM 

pavements and riding, cracking, and faulting indices for PCC pavements. The weights for 

individual indexes were determined in a previous study for Iowa DOT by Bektas and Smadi 

(Bektas, 2014). Moreover, all indexes are derived based on the proposed approach in the same 

study. 

1. Cracking Index 

Four different sub-indexes were used to calculate the cracking index in AC and COM 

pavements based on transverse cracking, longitudinal cracking, alligator cracking, and 

longitudinal-wheel-path cracking. For PCC pavements, transverse cracking and longitudinal 

cracking were established as sub-indexes. Three severity levels were evaluated for pavement 

distresses by the Iowa DOT: low, medium, and high. The coefficients of 1, 1.5, and 2 are the 

low, medium, and high aggregated severities, respectively, and convert all severity levels into 

low severity (Bektas, 2014). A maximum value (threshold), corresponds to a deduction of 

100 points. Therefore, a cracking sub-index of 0, was determined for each crack type within 

pavement type. Table 5 describes the threshold values for each sub-index in different 

pavement types. 

Table 5: Threshold value for different sub-indexes (Bektas, 2014) 

Sub-Index PCC pavements ACC pavements 

Transverse Cracking (count/km) 150 300 

Longitudinal Cracking (m/km) 250 500 
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Wheel-path Cracking (m/km) N/A 500 

Alligator Cracking (m^2/km) N/A 360 

The cracking index is the combination of weighted sub-indexes; these weights are 

determined based on expert opinion at the Iowa DOT. Table 6 shows the weight of each sub-

index for calculating the cracking index. 

Table 6: Weight of each sub-index for calculating the cracking index (Bektas, 2014) 

Sub-Index PCC weight (%) AC weight (%) 

Transverse Crack  60 20 

Longitudinal Crack 40 10 

Wheel-path Crack  0 30 

Alligator Crack  0 40 

The cracking indexes for AC, COM, and PCC pavements, based on the coefficient values 

provided by Iowa DOT experts are as follows: 

𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 (𝐴𝐶 𝑎𝑛𝑑 𝐶𝑂𝑀)

= 0.2 ∗ (𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.1 ∗ (𝐿𝑜𝑛𝑔𝑖𝑡𝑖𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥)

+ 0.3 ∗ (𝑊ℎ𝑒𝑒𝑙 − 𝑝𝑎𝑡ℎ 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥 

𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐶𝐶)

= 0.6 ∗ (𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝐿𝑜𝑛𝑔𝑖𝑡𝑖𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑢𝑏 𝐼𝑛𝑑𝑒𝑥) 

2. Riding Index 

The International Roughness Index (IRI) is the roughness index most commonly obtained 

from measured longitudinal road profiles. The Riding Index in this study is based on the IRI 

measurements, as expressed on a scale of 100. IRI values below 0.5m/km are taken as a 
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perfect 100, whereas, the values above 4.0m/km are 0 on the index scale; any other value 

between 0.5 and 4 m/km was calculated with interpolation (Bektas, 2014). 

3. Rutting Index 

Rutting is a term for when permanent deformation or consolidation accumulates in an 

asphalt pavement surface over time. Rutting occurs because the aggregate and binder in 

asphalt roads can move. A threshold value of 12 mm was set to 0 on a rutting Index scale of 

100, and the values below 12 mm were applied as deductions correspondingly based on 

previous research (Bektas, 2014). 

4. Faulting Index 

Faulting is a difference in elevation across a joint or crack; usually, the approach slab is 

higher than the leave slab due to pumping. Similar to rutting index in AC pavements, a 

threshold value of 12 mm was set to 0 on the index scale of 100 based on previous research 

(Bektas, 2014). 

5. Calculating Pavement Condition Index (PCI) 

After calculating all cracking, riding, rutting, and faulting indexes for AC and PCC 

pavements, the Iowa DOT uses the formula obtained from pure regression analysis to 

combine all these indexes and come up with a pavement condition index to describe the 

current condition of the pavements. The current formula for calculating the PCI for AC and 

PCC pavements are as follows (Bektas, 2014): 

𝑃𝐶𝐼 (𝑃𝐶𝐶) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 

𝑃𝐶𝐼 (𝐴𝐶) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 
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𝑃𝐶𝐼 (𝐶𝑂𝑀) = 0.4 ∗ (𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.4 ∗ (𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + 0.2 ∗ (𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) 

Based on the PCI values, Iowa DOT classifies pavement condition for the interstate 

highway system as good, where PCI is between 76-100; fair, where PCI is between 51-75; and 

poor, for sections with PCI between 0-50. Based on the Iowa DOT classification, approximately 

91% and 79% of the interstate highway system and non-intestate highway system in the state of 

Iowa was categorized as being in a good condition pavement till the end of 2017 (Iowa DOT 

Transportation Asset Management Plan, 2018). 

Condition Description 

After gathering and processing all the information from the last step, performance 

indicators needed for decision making were defined. Each pavement type has its own 

performance indicator, different for AC, COM and PCC. In this study, the cracking, riding, 

rutting, and PCI for AC and COM pavements are identified as performance indicators. But the 

cracking, riding, faulting, and PCI in PCC were used as a performance indicator. Highway 

agencies are using these performance measurements for selecting maintenance activities to 

expand the life of pavements and improve pavement conditions. 

Prediction with LSTM 

The LSTM, which is an RNN algorithm, was used to predict the future condition of 

individual pavement sections of the three different pavement types. The LSTM algorithm in this 

study was previously developed by the author in another study (Hosseini, 2020). The database 

was divided into a training dataset and a validation dataset. The training dataset was used for the 

learning process and developing the model. The validation dataset was used to validate that the 

model works well. Because the AC pavement type had a lower number of records compared to 

the other two pavement types, 80% of the records were used for training the model and (20%) for 



www.manaraa.com

65 

validating the model. In PCC and COM pavement types, these numbers are (70%) for training 

and (30%) for validating the model. 

Model validation confirmed that the output of the statistical model was acceptable with 

respect to the collected data. For evaluating any machine learning models, it is necessary to test 

some data which was not used in the training process. The Train_Test split approach was used 

for Cross-Validation (CV), a validation technique that checks the effectiveness of the machine 

learning model. After performing the model training on 70% of the database (training dataset), 

the validation dataset was used as a test sample to validate the model performance. The 

prediction for all three pavement types was conducted for 20 years with the developed model. 

For AC, PCC and COM pavement types, 50, 80, and 80 sample sections were used for prediction 

purposes, respectively.  

Perturbation of the predicted values 

Figure 19 illustrates the developed process for perturbating of predicted values. The 

process starts with; 

 Calculating the error which is the difference between the actual and predicted values of 

the performance indicators (ride index, rut index, crack index, and fault index) 

 Estimating the standard deviation (σ) of the errors calculated in the first step for all test 

sections 

 Generating the normally distributed random numbers with respect to the standard 

deviation and mean zero 

 Updating the performance indicators by adding the generated random numbers (positive 

or negative) to increase the sparsness of the point around the fitted model 

 Calculating the PCI based on the new performance indicators values 
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Five different scenarios were assumed from the minimum error rate to the maximum error 

rate to investigate the effect of increasing the error on the decision-making process:  

 Scenario 1: 10% error rate added to the performance indicators  

 Scenario 2: 30% error rate added to the performance indicators  

 Scenario 3: 50% error rate added to the performance indicators  

 Scenario 4: 70% error rate added to the performance indicators  

 Scenario 5: 90% error rate added to the performance indicators  

As a result of adding different error rates in AC pavements, the errors have the potential 

to increase or decrease the PCI in a range of [-3, 3], [-8, 8], [-12, 12], [-19, 19], [-25, 25] in 

scenarios 1 to 5, respectively. These numbers for COM pavements are [-3, 3], [-11, 11], [-15, 

15], [-25, 25], [-33, 33] in scenarios 1 to 5, respectively. Also in PCC pavements, the PCI 

changed in a range of [-2, 2], [-7, 7], [-13, 13], [-20, 20], [-25, 25] in scenarios 1 to 5, 

respectively.  Figures (20-22) show the distribution of the performance indicators for each 

pavement type, PCC, AC, and COM respectively for the base and 5 different error scenarios. 

Figure 23 shows the resulting PCI distribution for the three pavement types. 

 

Figure 19: Noise generation process 
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Figure 20: Distribution of individual indexes in PCC pavement type after applying the different rate of errors (Base Scenario, 10, 30, 

50, 70, and 90% rate of error, left to right) 
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Figure 21: Distribution of individual indexes in AC pavement type after applying the different rate of errors (Base Scenario, 

10, 30, 50, 70, and 90% rate of error, left to right) 



www.manaraa.com

 
6

9 

 

Figure 22: Distribution of individual indexes in COM pavement type after applying the different rate of errors (Base Scenario, 10, 

30, 50, 70, and 90% rate of error, left to right) 
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Figure 23: Distribution of PCI in different pavement types after applying the different rate of errors (Base Scenario, 10, 30, 50, 70, 

and 90% rate of error, left to right) 
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As can be seen from Figure 23, the PCI distribution remains almost similar for different 

error rates in all three pavement types since the errors are applied to the individual performance 

indicators and the PCI is calculated based on these new values. Figures (24-26) show the PCI 

values for the base and 5 error scenarios for the three pavement types (PCC, AC, and COM). 

 

Figure 24: Weighted average PCI for PCC pavements vs pavement age 

 

Figure 25: Weighted average PCI for AC pavements vs pavement age 
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Figure 26: Weighted average PCI for COM pavements vs pavement age 

 

Decision tree and maintenance assignment  

Each state DOT has its own decision tree to assign treatment actions: if the condition of 

the pavement is acceptable, then no action is needed; otherwise, treatment is assigned based on 

the decision trees. For this study, this is achieved by adopting existing decision trees and 

matrices developed by the Iowa DOT. Because each pavement type has its own performance 

indicator, different decision trees are available based on pavement types. Table 7 shows the 

decision tree for AC and COM pavements and Table 8 shows the decision trees for PCC 

pavements. 
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Table 7: Modified Iowa DOT decision matrix for AC and COM pavements 

K PCI 
Cracking 

Index 
Riding Index 

Rutting 

Index 
Treatment 

1 >50 and 

<80 

>40  >=40  <50 Thin Surface 

treatment 

2 >20 and 

<50 

>40 >=40 
 

Functional 

rehabilitation  
>=50 

3 >20 and 

<50 

<40 <40 >50 Minor Structural 

4 >20 and 

<50 

<40 
 

>50 Major Structural 

5 <=20 
   

Reconstruction 

6 Otherwise Do nothing 

Table 8: Modified Iowa DOT decision matrix for PCC pavements 

K PCI 
Cracking 

Index 
Riding Index 

Faulting 

Index 
Treatment 

1 >20 
 

>40 and <=60 
 

Diamond 

Grinding  
>=50 

2 >20 
 

<=40 
 

Functional 

rehabilitation 

3 >20 
 

0 
 

Minor Structural 

4 >20 >40 
  

Major Structural 

5 <=20 
   

Reconstruction 

6 Otherwise Do nothing 

 

It is worth mentioning that the PCI is not the only factor for assigning the treatment 

actions as can be seen from the decision trees. It is possible to have different treatment 

assignments for sections with similar PCI values when the other performance indicators are 

different (Cracking, Riding, Rutting, and Faulting indeces).  
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Cost calculation 

Based on the condition of the pavement section and the treatment assignment from the 

decision tree, the cost of maintenance can be calculated. Iowa DOT has its own unit cost for each 

treatment action. Table 5 shows the unit cost for each treatment action based on mile lane units. 

Table 9: Cost of Treatments (Mile-Lane) 

Asset type Treatment Unit cost 

Pavement Thin surface treatment $25,000/ mile-lane 

Diamond grinding $30,000/ mile-lane 

Functional rehabilitation $220,000/ mile-lane 

Minor structural $240,000/ mile-lane (Primary) 

$380,000/ mile-lane (Interstate) 

Major structural $400,000/ mile-lane (Primary) 

$550,000/ mile-lane (Interstate) 

Reconstruction $600,000/ mile-lane (Primary) 

$750,000/ mile-lane (Interstate) 

 

Optimization 

The selection process in this study is based on maximizing (optimizing) the total benefit 

acquired from the different treatments applied to the sections that are given a limited budget. 

Several definitions of benefit can be found in the literature; however, one of the widely used 

definitions is the area between the deterioration curve without treatment activity and the 

expected deterioration curve after treatment, as depicted in Figure 21-23. 

Based on the decision trees and performance indicators affected by different error rates, 

the treatment activities were identified for each test section. As a result of the selected treatment 

activities, the cost of treatments for each section was calculated based on the Iowa DOT unit 

cost, mile-lane. Each treatment activity can extend the life of pavements by increasing the PCI. 

Tables 10 and 11 show the proposed reset values on performance curves for the different 
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pavement types as recommended by the Iowa DOT. Reset values represent the increase in PCI 

values attributed to each treatment. 

Table 10: Reset Values for PCC pavements 

Treatment PCI 

Diamond Griding +20 (improve) 

Functional Rehabilitation 80 

Minor Structural 90 

Major Structural 95 

Reconstruction 100 

Table 11: Reset Values for AC and COM pavements 

Treatment PCI 

Thin Surface  +20 (improve) 

Functional Rehabilitation 80 

Minor Structural 90 

Major Structural 95 

Reconstruction 100 

 

After increasing the PCI for each section based on the reset values, the total benefit for 

each section was calculated. For determining the total benefit, the area under deterioration 

without treatments needs to be calculated first, as shown in equation 1. Figure 21 illustrates the 

pavement deterioration curve without applying the treatment. 

Area1 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
                                                                                                                        (1) 
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Figure 27: Deterioration curve without treatment 

 In the next step, both areas under the with-treatment and the without-treatment curves 

need to be calculated, as shown in equation 2. Figure 22 illustrates the area under both 

deterioration curves. 

Area2 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 + ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑏
                                                                                                  (2) 

Figure 28: Deterioration curve with treatment 
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Then, the total benefit is the difference between the areas resulting from equation 1 and 

equation 2, as shown below in equation 3 and figure 23: 

Total Benefit = Area1 – Area2                                                                                                      (3) 

 

Figure 29: Total Benefit Area 

Optimization is done to maximize the total benefit when the budget is limited and is less 

than the actual total cost. This analysis showed the effect of increasing the error on the benefit. 

The optimization part was conducted in Microsoft Office Solver in the following steps: 

 As mentioned earlier, five different scenarios based on a different amount of error 

contribution to the prediction model were investigated to see how an increase in error rate 

can change the decision-making process.  

 The total benefit for each scenario was calculated for each pavement type for each test 

section, as described above.  

 The total cost of treatments for each scenario was calculated for each test section based 

on decision trees and the unit costs. 
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 The limited budget, which is 15% less than the total cost is assumed as an available 

budget 

 By increasing the error contribution, the total cost (need) for maintenance actions 

increased, the available budget stayed constant, and Solver optimized these conditions to 

maximize the total benefit. 

The following section describes the outcomes from the optimization part and also the 

effect of increasing error contribution on the prediction model in terms of cost and benefit. 

Results and Discussion 

This section describes the results of simulating the contribution of error in the prediction 

model developed by LSTM. The overall outcomes from different error rates are presented in 

Tables 8 and 9. Five different scenarios were conducted which show the impact of an error 

increase on the cost and benefit. All scenarios were compared with the base scenario in which no 

error is applied to the prediction model. 

Table 12: Cost of treatments over 20 years for five different scenarios (in a million dollars) 

Cost Base Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

AC $54.071 

 

$62.929 $75.210 $91.734 $101.879 $92.958 

 

COM $53.891 

 

$90.714 

 

$76.044 

 

$114.129 

 

$103.085 

 

$155.484 

 

PCC $74.402 

 

$74.948 

 

$78.611 

 

$90.138 

 

$88.531 

 

$107.774 
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Table 13: Rate of benefit reduction with different amount of error contribution 

Benefit Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

AC %2 %3 %5 %5 %8 

COM %4 %4 %10 %9 %22 

PCC %6 %6 %8 %11 %20 

 

Based on the reported results, the base scenario has the minimum maintenance cost in all 

three pavement types. The results showed that the higher the error rate, the more money was 

needed for maintaining the pavement network. This result is based on the fact that when the 

prediction model cannot predict properly, some sections will have unnecessary maintenance. 

Also, maintaining some sections in need of urgent maintenance were delayed; as a result of 

which, the treatment action would change, and more expensive treatments would be needed for 

these sections. Table 8, which shows the results of the needed cost for different scenarios, is 

based on the predicted value of 50 AC, 80 COM, and 80 PCC sections with different lengths in 

20 years. 

Also, results showed that an increase in the error rate could reduce the benefit when 

agencies face a budget reduction or limitation. As a result of a higher benefit reduction rate, the 

overall pavement network condition could be worse. In all pavement types for the first scenario, 

where minimum error contribution was applied to the predicted value, a minimum rate of benefit 

reduction was observed. The more error added to the predicted values, the higher the percentage 

of benefit reduction. 
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Conclusion 

The results of the pavement prediction model developed with LSTM were used in this 

study. To investigate the effect of increasing the error on the decision-making process, five 

different scenarios were assumed from the minimum error rate to the maximum error rate. The 

scenarios were investigated by adding different rates of error (%10, %30, %50, %70, and %90) 

to the predicted values of performance indicators. The PCI was calculated based on the modified 

performance indicators with different error rates. The Iowa DOT decision trees were used to 

check the effect of the prediction model accuracy on the cost of treatments in different pavement 

types. 

The results from the different scenarios were compared to check whether decreasing or 

increasing the accuracy of the prediction model can have an effect on the cost of maintenance. 

Also, all five scenarios were compared with the original output of the prediction model as a base 

scenario in terms of cost and benefit. Based on the reported results, increasing the rate of error 

has a significant correlation with the cost of maintenance activities, and agencies need to 

improve the prediction accuracy of their current models to prevent spending unnecessary costs. 

The more error was added to the prediction model, the higher the cost of maintenance needed for 

maintaining the pavement network. The base scenario has the minimum cost compared to the 

other five scenarios. Also, increasing the rate of error into the prediction model can increase the 

rate of benefit reduction and consequently worsen the pavement network condition. 
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CHAPTER 4.    GENERAL CONCLUSION, LIMITATIONS, AND FUTURE 

RESEARCH WORK 

A pavement prediction performance model is necessary at the network level for assigning 

the available funding to any maintenance and rehabilitation activities, and at the project level for 

determining the best strategies. The objective of this study was to develop a new framework 

using the LSTM approach to predict the future condition of composite, asphalt, and concrete 

pavements. Also, for the Iowa DOT, the effect of prediction accuracy was investigated in terms 

of the cost and benefit of maintenance and rehabilitation activities on test sections in the state of 

Iowa. 

The deterioration models of the historical pavement condition data for the state of Iowa 

were developed using an LSTM approach. The proposed model and current method in Iowa 

DOT were compared to investigate the model accuracy. Validation of the models indicated that 

the LSTM model predictions were generally close to the actual values of the riding, rutting, 

faulting, and cracking indices, as well as PCI. The comparison between the developed model and 

the individual regression models used by the Iowa DOT from the three different pavement types 

indicates that the LSTM model achieved a higher prediction accuracy than the Iowa DOT 

individual regression models. A hypothesis analysis of mean was conducted for the PCI residual 

in both techniques, and the results exhibited less LSTM bias than those of individual regression 

models. 

Each of these two methods has their own advantages and disadvantages. The equation of 

the individual regression models requires an annual update, and each section will exhibit a new 

year-by-year behaviour, changes the prediction process more complex. The LSTM provides one 

more consistent model compatible for all sections using a training process. The LSTM approach 

was sensitive to the data fluctuation resulting from unrecorded maintenance activities. While the 
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evaluation of the regression models was restricted to residuals between the fitted functions and 

the actual readings, the evaluation of the LSTM was based on its ability to predict full 

performance curves not included during the training stage. 

The results of the pavement prediction model developed with LSTM were used to 

investigate the effect of increasing the error on the decision-making process. Five different 

scenarios were assumed from the minimum error rate to the maximum error rate. The scenarios 

were investigated by adding different rates of error (10%, 30%, 50%, 70%, and 90%) to the 

predicted values of performance indicators. The PCI was calculated based on the modified 

performance indicators with different error rates. The Iowa DOT decision trees were used to 

check the effect of the prediction model accuracy on the cost of treatments in different pavement 

types. 

The results of different scenarios were compared to check whether decreasing or 

increasing the accuracy of the prediction model can have an effect on the cost of maintenance. 

Also, all five scenarios were compared with the original output of the prediction model as a base 

scenario in terms of cost and benefit. Based on the reported results, increasing the rate of error 

has a significant correlation with the cost of maintenance activities, and agencies need to 

improve the prediction accuracy of their current models to prevent errors in calculating cost. The 

more error was added to the prediction model, the higher the cost of maintenance needed for 

maintaining the pavement network. The base scenario has the minimum cost compared to the 

other five scenarios. Also, increasing the rate of error into the prediction model can increase the 

rate of benefit reduction and consequently worsen the pavement network condition. 

Overall, an LSTM model can be a decision support tool that can help state DOTs for 

resource allocation and maintenance activities in the pavement management system. Also, the 
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importance of prediction accuracy was proven, which can encourage agencies to work on this 

aspect of pavement prediction models in each pavement management system. 

This research had some limitations as follows: 

1. In many cases in the PMIS database, minor maintenance and rehabilitation records were 

not available; so, the impact of maintenance on pavement condition overtime was not 

modelled in this study.  

2. Segments with PCI values increasing over time were discarded from the analysis because 

they might be associated with unrecorded maintenance activities. So, the training process 

did not cover the entire database. 

3. Because in the LSTM algorithm, the dependent and independent variables are the same 

and prediction is time-dependent, external factors such as weather information cannot be 

involved in the condition prediction.  

4. The inconsistency and missing value in the PMIS database were observed, which can 

decrease the accuracy of prediction in the time-dependent algorithm such as LSTM. 

5. The impact of section structure and design are not included in the model. 

In this research, some of the assumed variability captured but not necessarily the overall 

uncertainty in predictions, so, future work might address the uncertainty levels in predictions and 

the contributing components. Also, in this research prediction conducted based on univariate 

LSTM model, future work might address multivariate LSTM model, that can capture the impact 

of each index into the PCI. Also, historical weather data could be another variable that can 

involve in the multivariate LSTM prediction model for future research work.  
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